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The steady state response of an elastic ring subjected to a uniformly moving load is
considered. It is assumed that the ring is attached by visco-elastic springs to an immovable
axis and the load is radial and point-like. An exact analytical solution of the problem is
obtained by applying the &&method of images''. The ring patterns are analyzed. It is shown
that for small velocities of the load the ring pattern is almost perfectly symmetric with
respect to the loading point. If the load velocity is smaller, but comparable with the
minimum-phase velocity <min

ph
of waves in the ring, the pattern becomes slightly asymmetric

due to viscosity of the springs. When the load moves faster than <min
ph

the pattern becomes
wave-like and substantially asymmetric. The condition of resonance is found. It is shown
that resonance occurs when either the ring length is divisible to the wavelength of a wave
radiated by the load or the velocity of the load is close to <min

ph
.
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1. INTRODUCTION

The problem of determining the response of an elastic system subjected to a moving load
has received considerable attention in the past. Work in this area has been mostly
motivated by the need to analyze the vibrations of such structures as bridges and railroad
tracks caused by moving vehicles. As a consequence, there exists an impressive number of
investigations where the response of straight beams on various types of foundations has
been studied, see, for example references [1}6].

In this paper, we study the forced vibrations caused by a moving load in an elastic ring,
which is attached by visco-elastic springs to an immovable axis. This model is both of
theoretical and experimental interest and can "nd a practical application. From the
theoretical point of view, we deal with a ring-like elastic system, de#ections of which is
repetitive in space. Due to this fact the steady state regime can be reached in this system
despite its "nite length.

When laboratory experiments are concerned, the model gives a great opportunity to
measure the steady state response at a load velocity close to the wave velocity. The
advantage of the rings is that one does not require much space for the experimental set-up.
In contrast, for experiments involving straight elastic systems, the set-up has to be chosen
2-460X/00/180511#14 $35.00/0 ( 2000 Academic Press
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big enough to enable the load to approach a high enough velocity and subsequently reach
the steady state regime. Taking into account that the re#ections from the endpoints of
a straight elastic system should be excluded for approaching a &&real steady-state regime'',
one can envisage the complexity of the required set-up.

As an example of a practical application of the model, one may consider elastic wheels for
train wagons, which could replace the usual steel wheels. These wheels, currently being
tested by companies in Europe, can substantially reduce the noise produced by a train. The
model we study in this paper can describe this kind of wheels provided that the gyroscopic
forces due to the wheel rotation are negligible and the contact with a rail is point-like.

The ring vibrations are analysed in this paper under the following assumptions. It is
supposed that the ring thickness is much smaller than its radius and the vibrations take
place in the plane of the ring. Further, the hypothesis of the plane cross-sections is applied,
which means that the radial cross-sections remain plane under loading. The considered load
is point-like, acting in the radial direction, harmonically varying in time and uniformly
rotating around the ring.

To obtain the steady state solution of the problem the &&method of images'' is applied.
According to this method the initial problem is equivalently reformulated in the in"nite
space interval introducing additional loads (images), which uniformly move at a "xed
distance from each other. To satisfy the periodicity of the ring de#ections, this distance is
chosen to be equal to the length of the ring. Since the problem is linear, the total solution is
a sum of the ring response to all the individual loads. Taking into account that these
responses are the same except for a certain phase shift, the summation can be carried
analytically. Having completed this summation, one obtains the solution of the initial
problem as a sum of six terms (this number is equal to the order of equations describing the
wheel vibrations).

Parametric analysis of the obtained result is mainly concerned with possible ring shapes
that may occur when the load velocity is varied. It is shown that the shape of the ring
qualitatively depends on whether the load radiates waves. Further, the condition of
resonance is found. It turns out that the resonance occurs when one of the following
conditions is satis"ed. Firstly, it occurs if the ring length is divisible to the wavelength of
a wave radiated by the load and, secondly, if the load velocity is close to the minimum-phase
velocity of waves in the ring.

2. GOVERNING EQUATIONS AND REFORMULATION OF THE PROBLEM
ACCORDING TO THE &&METHOD OF IMAGES''

The steady state response of an elastic ring to the radial point load P (t)"P
0
exp(iXI t)

acting in the point h"u
0
t is considered, see Figure 1. It is assumed that the neutral line of

the ring has radius R and an element of the ring, "xed by angle h, takes part in the radial and
the circumferential motion. Small displacements in these directions are denoted as w (h, t)
and u (h, t) respectively. It is additionally assumed that the ring is attached to an immovable
axis by elastic elements, continuously distributed along the ring, with the radial sti!ness per
unit length k

r
and the circumferential sti!ness per unit length k

c
.

Assuming "nally that the radial cross-sections of the ring remains plane during the
vibrations, on can write the following density of the Lagrange function for the considered
system:
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Figure 1. In-plane ring vibrations under a moving load.
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where x"Rh, o is the mass of the ring per unit length, F is the cross-sectional area and EI is
the ring-bending sti!ness. E denotes Young's modulus.

Substituting j (x, t) into the Euler equation, assuming that both the radial and the
circumferential springs possess viscosity per unit length p and adding the loading force, one
obtains the systems of governing equations for the ring forced vibrations in the form
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where Int (2) is the integer part of a value.
Completing the problem statement, one should require that the ring displacements are

repetitive with the period 2nR:

u (0, t)"u(2nR, t), w (0, t)"w (2nR, t). (3)

To analyze the problem we use the so-called &&method of images''. The idea of this method
is that the response of a bounded (in our case ring-like) system to a load can be equivalent to
the response of a part of an in"nity long system (described by the same equations) subjected
to a set of loads. In other words, the method utilizes the fact that by introducing some extra



Figure 2. Application of the &&method of images''.
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loads one can satisfy boundary conditions. These loads are called images since their
location is normally mirrored to the real load with respect to boundaries. In the considered
case, to satisfy conditions (3), one should introduce in"nitely many equivalent loads, each
moving with the velocity v"Ru

0
at the "xed distance 2nR from the very neighbours, see

Figure 2.
We will call the elastic system depicted in Figure 2 as the &&extending ring''. The forced

vibrations of the &&extending ring'' are described by the following system of equations written
in accordance with system (2) (left-hand sides are kept, but the series of loads is introduced
and the space interval is considered to be in"nite):
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The steady state solution of system of equations (4) coincides with that of system of
equations (2) in the interval x3[0, 2nR] and satis"es conditions (3). One can easily see it
since: (1) left-hand sides of the equations in systems (2) and (4) are the same; (2) at any time
moment both systems of equations describe the only one and exactly the same load moving
in the space interval x3[0, 2nR]; (3) system of equations (4) is invariant with respect to the
translation xPx#2nRn, so, the periodicity condition (3) is satis"ed.

Since system of equations (4) is linear, the principle of superposition is applicable which
implies that the response to a set of loads is equal to the sum of responses to the individual
loads of this set. Accounting that the loads di!er from each other in only the application
point, it is easily understood that to obtain a solution of the problem one should "nd
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the response to a single load and then summarize it in"nitely many times with the space
shift 2nRn.

3. RESPONSE TO A SINGLE LOAD

In this Section the steady state response of the &&extending ring'' to a single load from the
series P (t) + =

n/~=
dMx!vt#2nRnN is studied. Introducing dimensionless variables and

parameters by the de"nitions

q"ht, y"xJh/a, <"v/J2ah (h"Jk
r
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r
, X"XI /h, F

0
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0
/ (oFah),

one can write the equations for the vibrations of the &&extended ring'' under a single load as
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!R(y(R, !R(q(R.

Additionally, the vanishing of displacement should be required at in"nitely large distances

from the load: Mus,wsNP0 for Dy!qbJ2 DPR.
The system of equations (5) can be solved by using the integral Fourier transforms with

respect to time and the space co-ordinate. De"ning these transforms as
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and applying them to system (5) one obtains
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The solutions of system of algebraic equations (7) can be written in the form
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Application of the inverse Fourier transform over wave number k to system (8) yields
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where m"y!<qJ2 is the distance from the moving load.
The physical meaning of expressions (9) is worth to discussing here since it is the basic

solution that dictates qualitative features of the ring vibrations. As one can see from

equations (9), the solution qualitatively depends on zeros of polynom D (k<J2!X , k),
which can be presented as roots of the following system of equations:
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The "rst equation in system (10) is the dispersion equation of the extended ring, while the
second equation is the so-called kinematic invariant, which provides the equivalence of
phases of the load vibration and vibration of the extended ring in the loading point.

The lower and the higher branches of the dispersion curves (solution of equation D"0
for e"0) are respectively depicted in Figure 3(a) and 3(b) for the following set of the ring
Figure 3. Lower (a) and higher (b) dispersion branches of the extended ring.
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parameters:

E"2.06]1011N/m2, o"7800 kg/m, F"15]10~3m2, l"2.83]10~6m4,

R"0.3m, k
r
"6]107N/m2, k

r
"1.8]107N/m2.

These parameters describe a steel ring with a rectangular cross-section of the size
1cm]15 cm. The circumferential sti!ness k

c
of the springs is taken three times smaller than

the radial (k
r
) one. The magnitudes of k

c
and k

r
are calculated from the related static

problem proved that the standing radial load of the magnitude 5000 kg causes the radial
de#ection of the ring equal to 2.35mm.

In Figures 3(a) and 3(b) the frequency f of vibrations of the &&extended ring'' (in Hz) is
shown versus the ratio of the ring radius R and the wavelength j ( f"uh/2n,
R/j"kB/2nA). One can see from Figure 3(b) that the higher branch is associated with
frequencies larger than 1750Hz, and, therefore, plays a minor role in the dynamic response
of the ring. In contrast, the lower branch, shown in Figure 3(a) has the cut-o! frequency in
the order of 200Hz and can be easily excited by the moving load. One can see it by

analyzing location of the kinematic invariant lines (u"k</J2!X8f"v/j!f
load

),
which are depicted in Figure 3(a) for the three di!erent velocities of motion, assuming that
X"0. The line v"30m/s has no crossing points with the dispersion curve. This implies
that a constant load moving with this velocity excites no waves in the &&extended ring'' (as
well as in the closed ring). The velocity v"38)3m/s is the critical one, since it is equal to the
minimum-phase velocity of waves in the ring (the kinematic invariant is tangential to the
dispersion curve). The steady state displacement of the &&extending ring'' subjected to a single
constant load substantially grows in this case. The line v"55 m/s has two crossing points
with the dispersion curve. This means that the constant load moving with this velocity
generates waves in the ring.

In the case of harmonically varying load XO0, the kinematic invariant crosses f-axis not
in the origin, but in the point f"f

load
. Evidently, in this case waves will be generated in the

ring starting from lower velocities of motion then in the case of the constant load.
Thus, having analyzed the kinematics of waves in the &&extending ring'' under the single

load, we were able to "nd &&bifurcation'' velocities of motion (like v"38)3m/s for the
constant load). If the load velocity is larger than the &&bifurcation'' one, then the load
generates waves in the ring. For lower velocities the ring pattern is much more localized
around the loading point.

Let us evaluate expressions (9). The denominator of the integrands in these expressions is
a polynom of the order six, which can be written as
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Therefore, expressions (9) can be rewritten as follows:
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where k
j
( j"126) are complex roots of equation D (k<J2!X , k)"0.

It is convenient to evaluate integral (11) by applying the contour integration method [7].
Employing Jordan's lemma [7], we close the contour of integration over the upper

half-plane of complex variable k for m'08 y'q<J2 and over the lower half-plane for

m(08y'q<J2. Then, according to the residue theorem, one obtains

behind the load (m(0):
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before the load (m'0):
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4. RESPONSE OF THE RING

To obtain the response of the ring one has to summarize the responses of the &&extended
ring'' to the single loads located at the points x"m#2nRj, j"!R ,2,R, see Figure 2.
Results of this summation in the space interval y3[0, 2nR] will give us an exact solution of
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initial system of equations (2). For providing the summation, one should take into account
an obvious fact that the considered interval y3[0, 2nR] lies before loads located at the
points x"m#2nRj, j"!R ,2,!1 and behind loads, applied at x"m#2nRj,
j"1,2,R. Expression (13) should be used for the loads j"!R ,2,!1, and
expression (12) for the loads j"1,2,R. The contribution of the load applied at x"m
depends on whether the interval y3[0, m] or the interval y3[m, 2nR] is considered.

Thus, employing expressions (12) and (13), one can describe the steady state response of
the ring as

for y3[0,m]8 y3[0, q<J2]:
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for y3[m, 2nR]8 y3[ q<J2, 2nR]:
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The above expressions can be simpli"ed by summing with respect to index j. The simplest
way to do it is by employing the following formula for the sum of the geometric progression
with in"nite number of terms:
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In the sums over j, which are coupled with sums over m and with sums over n one
respectively has p"exp(2nRik

m
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) . Evidently, in both cases the

requirement DpD(1 is met since, by de"nition, Im(k
m
)'0 and Im(k

n
)(0.

Thus, applying formula (14) one obtains "nal expressions for the ring de#ection as

for y3[0,m]8 y3[0, q<J2]:
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for y3[m, 2nR]8 y3[q<J2, 2nR]:
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The right-hand sides of expressions (15) and (16) are complex. The physical meaning has
either real or imaginary parts of them. The real part should be taken if the load is considered
in the form P (t)"P

0
cos (XI t ), while the imaginary part should be used if the load is

described as P (t)"P
0
sin (XI t).

Expressions (15) and (16) can be easily analyzed numerically. The only analytically
unknown values in these expressions are roots k

m
and k

n
, which can be found with the help

of any standard program for determining complex roots of polynomial functions. Results of
numerical evaluation in the case of the constant (X"0) load are presented in Figures 4}6.
Each "gure is related to a speci"c load velocity. The other parameters are taken the same as
for calculation of the dispersion curves (Figure 3) and, additionally, p"2]104Ns/m2,
P"5]103N. In Figures 4}6(a) the ring de#ections are plotted versus the distance from the
load m. The solid and the dashed lines are respectively related to the radial and the
circumferential de#ections. In Figures 4}6(b) the ring shape is presented in a special scale,
which has been calculated in the following manner:

x"(R#10w (u)) cos (u)#10 u (u) sin (u),

y"(R#10w (u)) sin (u)!10 u (u) cos (u),

where u"m/R. As one can see from this formula, we have multiplied the ring de#ection by
factor 10 to make them visible. The position of the load and the direction of its motion are
shown in the "gures by arrows.
Figure 4. The ring de#ections and the ring shape for <"0.



Figure 5. The ring de#ections and the ring shape for <"30m/s.

Figure 6. The ring de#ections and the ring shape for <"55m/s.
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Analysing the "gures one can draw the following conclusions:

1. In the static case depicted in Figure 4 the ring de#ections are perfectly symmetrical with
respect to the loading point and the de#ection "eld is strongly localized around this
point.

2. When the load moves with the sub-critical velocity <"30m/s, the ring pattern remains
localized around the load, but becomes slightly asymmetrical. This asymmetry is caused
by the viscosity of the springs connecting the axis and the ring. One can also notice from
Figure 5(b) that the load somehow climbs up the hill'' (the derivative of the ring
de#ections with respect to m is positive in the loading point). It implies that to maintain
the uniform motion of the load one has to apply external force acting in circumferential
direction.

3. When the load moves with the super-critical velocity <"55m/s it radiates waves. This
makes the ring pattern substantially asymmetrical with respect to the loading point. The
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de#ection "eld, however, remains rather localized around the load. The localization
takes place due to the fact that the lowest dispersion branch (see Figure 3(a)) has quite
high cut-o! frequency (about 200Hz) and, consequently, the radiated waves have
frequencies above this value. Therefore, even the small damping in the system
(p/k

r
+3]10~4 s) provides substantial attenuation of the waves amplitudes as they

propagate out of the load.

Let us analyze the e!ect of the harmonic variation of the load magnitude (XO0). In
Figure 7(a) and 7(b) the radial ring de#ection, which is dominantly determining the ring
pattern, is depicted for <"30 and 55m/s respectively. Each "gure shows the patterns for
two di!erential load frequencies: f"X/2n"100 Hz (solid line), f"250Hz (dashed line).
The "rst frequency lies below the cut-o! frequency, and the second one is located above it.

Figure 7 shows that despite visible di!erences in responses to di!erent frequencies and
velocities of the load, the ring patterns remains localized around the loading point. This
happens due to the above-mentioned fact that the high-frequency waves are e!ectively
attenuated by a small distributed viscosity.

One of the most important questions arising in the moving load problems is related to the
determination of the critical load velocities under which de#ections of an elastic system
substantially grow. To determine these velocities we have calculated the absolute value of

the maximum ring de#ection D
max

"maxm| *0;2nR+
MJu2#w2N for the case of the constant

load motion. This maximum de#ection is plotted in Figure 8 versus the load velocity for two
di!erent values of the viscosity p.

The "gure shows that in the case of the small damping p"700 Ns/m2, there exists
a number of resonance velocities. The lowest one is approximately equal to v"38)3m/s
and, therefore, is determined by the critical velocity of the single load moving along the the
&&extended ring'', see Figure 3. The other critical velocities are related to resonances on the
eigenmodes of the ring and appear when the ring length is divisible by the wavelength of
a wave radiated by the load. These velocities, however, disappear when one increases the
viscosity coe$cient p. It is seen from Figure 8 that already for p"7000Ns/m2

(p/k
r
+1)1]10~4 s) the higher critical velocities disappear and only the "rst critical velocity

gives ampli"cation with a factor of 2.
Figure 7. The radial ring de#ection under harmonically varying load.



Figure 8. Maximum de#ection of the ring versus velocity.
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Therefore, one can conclude that for the considered parameters, the ring response is
primarily determined by the response of the &&extended ring'' to the single load. It is
necessary to underline, however, that if the springs connecting the ring and the axis were
softer, the resonances on the eigenmodes of the ring would be much more important.

5. CONCLUSIONS

The steady state vibrations of an elastic ring subjected to a moving load have been
studied. It has been assumed that the ring is attached by visco-elastic springs to an
immovable axis and the load is radial and point-like. An exact analytical solution of the
problem has been obtained by applying the &&method of images''. According to this method,
the solution has been represented as a superposition of "elds formed by the load in
a corresponding in"nitely long &&extended ring''. Such approach can be an interesting
alternative to the method of representing the response in the form of the Fourier series over
the eigenmodes. The advantage of the &&method of images'' is that it gives a very accurate
solution in the vicinity of the loading point. Therefore, this method is suitable when the
characteristic length of the de#ection "eld excited by the load in the ring is substantially
smaller that the ring length. This was the case, which has been considered in this paper. It
has been found that for a chosen set of parameters the load "eld is localized around the
loading point for all velocities of motion. This has happened since the springs connecting
the axis and the ring have been chosen quite sti! (k

r
"6]107N/m2) causing the

high-frequency dispersion of waves in the ring. Accordingly, waves radiated by the load
were e!ectively attenuated by a small viscosity of the springs.

It has been shown that for a small velocity of the load the ring pattern is almost perfectly
symmetric with respect to the loading point. If the load velocity is smaller, but comparable
with the minimum-phase velocity <min

ph
of waves in the ring, the pattern becomes slightly

asymmetric due to the viscosity of the springs. When the load moves faster than <min
ph

, the
pattern becomes wave-like and substantially asymmetric. In the last two cases it is necessary
to apply an external circumferential force to maintain the uniform load motion along the
ring.
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The critical velocities of the load have been analyzed. It has been shown that the
resonance associated with these critical velocities occurs when either the ring length is
divisible by the wavelength of a wave radiated by the load or the velocity of the load is close
to the minimum-phase velocity of waves in the ring. The last type of resonance, which is
natural for in"nitely long systems [8, 9], occurred in the considered model due to the
above-mentioned localization of the load "eld. If the system parameters were chosen
di!erently, this resonance could have disappeared.
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